PSpice Models Archive

//PSpice Models Collection

----------------------------------------

.subckt 12ax7i 1 2 3 ; placca griglia catodo

+ params: mu=100 ex=1.4 kg1=1060 kp=600 kvb=300 rgi=200

+ ccg=2.3p cgp=2.4p ccp=.9p

e1 7 0 value=

+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}

re1 7 0 1g

g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}

rcp 1 3 1g

c1 2 3 {ccg}

c2 1 2 {cgp}

c3 1 3 {ccp}

r1 2 5 {rgi}

d3 5 3 dx

.model dx d(is=1n rs=1 cjo=10pf tt=1n)

.ends

**********************

.subckt 6sn7i 1 2 3 ; placca griglia catodo

+ params: mu=21 ex=1.36 kg1=1460 kp=150 kvb=400 rgi=300

+ ccg=2.4p cgp=4p ccp=.7p

e1 7 0 value=

+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}

re1 7 0 1g

g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}

rcp 1 3 1g

c1 2 3 {ccg}

c2 1 2 {cgp}

c3 1 3 {ccp}

r1 2 5 {rgi}

d3 5 3 dx

.model dx d(is=1n rs=1 cjo=10pf tt=1n)

.ends

*********************

.subckt 6sn7ii 1 2 3 ; placca griglia catodo

+ params: mu=22.004 ex=1.2128 kg1=1213.7 kp=203.06 kvb=355 rgi=2k

+ ccg=2.4p cgp=4p ccp=.7p

e1 7 0 value=

+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}

re1 7 0 1g

g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}

rcp 1 3 1g

c1 2 3 {ccg}

c2 1 2 {cgp}

c3 1 3 {ccp}

r1 2 5 {rgi}

d3 5 3 dx

.model dx d(is=1n rs=1 cjo=10pf tt=1n)

.ends



********************

.subckt 6dj8i 1 2 3 ; placca griglia catodo

+ params: mu=28 ex=1.3 kg1=330 kp=320 kvb=300 rgi=2k

+ ccg=2.3p cgp=2.1p ccp=.7p

e1 7 0 value=

+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}

re1 7 0 1g

g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}

rcp 1 3 1g

c1 2 3 {ccg}

c2 1 2 {cgp}

c3 1 3 {ccp}

r1 2 5 {rgi}

d3 5 3 dx

.model dx d(is=1n rs=1 cjo=10pf tt=1n)

.ends

********************

.subckt 6dj8ii 1 2 3 ; placca griglia catodo

+ params: mu=35.7 ex=1.35 kg1= kp=305 kvb=310 rgi=2k

+ ccg=3.1p cgp=1.4p ccp=.45p

e1 7 0 value=

+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}

re1 7 0 1g

g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}

rcp 1 3 1g

c1 2 3 {ccg}

c2 1 2 {cgp}

c3 1 3 {ccp}

r1 2 5 {rgi}

d3 5 3 dx

.model dx d(is=1n rs=1 cjo=10pf tt=1n)

.ends



*******************

.subckt 2a3-X 1 2 3 ; placca griglia catodo ***F.I.V.R.E.***

+ params: mu=4.4 ex=1.27 kg1=1106 kp=39.6 kvb=10 rgi=2k

+ ccg=2.3p cgp=2.1p ccp=.7p

e1 7 0 value=

+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}

re1 7 0 1g

g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}

rcp 1 3 1g

c1 2 3 {ccg}

c2 1 2 {cgp}

c3 1 3 {ccp}

r1 2 5 {rgi}

d3 5 3 dx

.model dx d(is=1n rs=1 cjo=10pf tt=1n)

.ends

*****************

.subckt 2a3-Y 1 2 3 ; placca griglia catodo ***F.I.V.R.E.***

+ params: mu=4.4 ex=1.25 kg1=1106 kp=39.6 kvb=10 rgi=2k

+ a=-2.889e-7 b=-1.222e-5 c=1.321

+ ccg=7.5p cgp=16.5p ccp=5.5p

e1 7 0 value=

+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}

re1 7 0 1g

e2 8 0 value = {a*v(1,3)*v(1,3)+b*v(1,3)+c}

re2 8 0 1meg

g1 1 3 value= {(pwr(v(7),v(8))+pwrs(v(7),v(8)))/kg1}

rcp 1 3 1g

c1 2 3 {ccg}

c2 1 2 {cgp}

c3 1 3 {ccp}

r1 2 5 {rgi}

d3 5 3 dx

.model dx d(is=1n rs=1 cjo=10pf tt=1n)

.ends 2a3-y ; modello con andamento parabolico esponente EX

*******************

.subckt 300B 1 2 3 ; placca griglia catodo *** Western Electric ***

+ params: mu=3.85 ex=1.264 kg1=1240 kp=89 kvb=10 rgi=2k

+ a=1.119e-6 b=-7.983e-4 c=1.398

+ ccg=9p cgp=15p ccp=4.3p

e1 7 0 value=

+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}

re1 7 0 1g

e2 8 0 value = {a*v(1,3)*v(1,3)+b*v(1,3)+c}

re2 8 0 1g

g1 1 3 value= {(pwr(v(7),v(8))+pwrs(v(7),v(8)))/kg1}

rcp 1 3 1g

c1 2 3 {ccg}

c2 1 2 {cgp}

c3 1 3 {ccp}

r1 2 5 {rgi}

d3 5 3 dx

.model dx d(is=1n rs=1 cjo=10pf tt=1n)

.ends

******************

.subckt 6cw4 1 2 3 ; placca griglia catodo NUVISTOR R.C.A.

+ params: mu=68.75 ex=1.35 kg1=160 kp=250 kvb=300 rgi=200

+ ccg=4.1p cgp=.92p ccp=.18p

+ a=2.133e-7 b=-9.40e-5 c=.0139666 d=.64

e1 7 0 value=

+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}

re1 7 0 1g

e2 8 0 value=

+{a*v(1,3)*v(1,3)*v(1,3)+b*v(1,3)*v(1,3)+c*v(1,3)+d}

re2 8 0 1g

g1 1 3 value= {(pwr(v(7),v(8))+pwrs(v(7),v(8)))/kg1}

rcp 1 3 1g

c1 2 3 {ccg}

c2 1 2 {cgp}

c3 1 3 {ccp}

r1 2 5 {rgi}

d3 5 3 dx

.model dx d(is=1n rs=1 cjo=10pf tt=1n)

.ends 6cw4

*************

.subckt ef86t 1 2 3 4 ;placca, griglia controllo, catodo, griglia schermo

+ params: mu=37.5 ex=1.2 kg1=1500 kg2=2500 kp=260 kvb=4

+ ccg=14p cpg1=.85p ccp=12p rgi=1k

*************************

*only for triode mode*

*************************

re1 7 0 1meg

e1 7 0 value =

+{v(4,3)/kp*log(1+exp((1/mu+v(2,3)/v(4,3))*kp))}

g1 1 3 value =

+{(pwr(v(7),ex)+pwrs(v(7),ex))/kg1*atan(v(1,3)/kvb)}

g2 4 3 value=

+{(exp(ex*(log((v(4,3)/mu)+v(2,3)))))/kg2}

rcp 1 3 1g ;convergence resistor

c1 2 3 {ccg}

c2 1 2 {cpg1}

c3 1 3 {ccp}

r1 2 5 {rgi}

d3 5 3 dx

.model dx d(is=1n rs=1 cjo=10pf tt=1n)

.ends ef86t ;triode mode

***********************



**************************

.subckt 811a-i 1 2 3 ; placca griglia catodo Documentazione R.C.A.

+ params: mu=160 ex=1.317 kg1=1350 kp=100 kvb=1400 rgi=1000

+ ccg=2.3p cgp=2.4p ccp=.9p

+ a=1.6667e-10 b=-.0000002875 c=0.0001758333 d=1.275

e1 7 0 value=

+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}

re1 7 0 1g

e2 8 0 value=

+{a*v(1,3)*v(1,3)*v(1,3)+b*v(1,3)*v(1,3)+c*v(1,3)+d}

re2 8 0 1g

e3 9 0 table {v(2,3)} =

+ (-1 1.1e-16)

+ (0, .6e-4) (20, 5.38e-4)

+ (40, 6.25e-4) (60, 7.41e-4)

re3 9 0 1g

g1 1 3 value= {(pwr(v(7),v(8))+pwrs(v(7),v(8)))*v(9)}

rcp 1 3 100k

c1 2 3 {ccg}

c2 1 2 {cgp}

c3 1 3 {ccp}

r1 2 5 {rgi}

d3 5 3 dx

.model dx d(is=1n rs=1 cjo=10pf tt=1n)

.ends 811a-i

**********************

.subckt 845i 1 2 3 ; placca griglia catodo R.C.A.

+ params: mu=5.27 ex=1.25 kg1=2560 kp=100 kvb=180 rgi=8000

+ ccg=6p cgp=13.5p ccp=6.5p

+ a=-5.150e-14 b=8.536e-11 c=-1.469e-7 d=4.635e-4

e1 7 0 value=

+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}

re1 7 0 1g

e2 8 0 value=

+{a*v(1,3)*v(1,3)*v(1,3)+b*v(1,3)*v(1,3)+c*v(1,3)+d}

re2 8 0 1g

g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))*v(8)}

rcp 1 3 1g

c1 2 3 {ccg}

c2 1 2 {cgp}

c3 1 3 {ccp}

r1 2 5 {rgi}

d3 5 3 dx

.model dx d(is=1n rs=1 cjo=10pf tt=1n)

.ends 845i

*******************

.subckt ecc86 1 2 3 ; placca griglia catodo

********************************************

;modello valido nell'intorno vp=0..10volt

********************************************

+ params: mu=14 ex=1.71 kg1=295 kp=220 kvb=100 rgi=2k

+ ccg=3p cgp=1.3p ccp=1.8p

+ a2=0.0083 a1=-0.022 a0=1.1033

e1 7 0 value=

+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}

re1 7 0 1g

e2 8 0 value=

+{a2*v(1,3)*v(1,3)+a1*v(1,3)+a0}

re2 8 0 1g

g1 1 3 value= {(pwr(v(7),v(8))+pwrs(v(7),v(8)))/kg1}

rcp 1 3 1g

c1 2 3 {ccg}

c2 1 2 {cgp}

c3 1 3 {ccp}

r1 2 5 {rgi}

d3 5 3 dx

.model dx d(is=1n rs=1 cjo=10pf tt=1n)

.ends



.subckt e182cc-sq 1 2 3 ; placca griglia catodo

+ params: mu=24 ex=1.7 kg1=75 kp=320 kvb=300 rgi=2k

+ ccg=2.3p cgp=2.4p ccp=.9p

e1 7 0 value=

+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}

re1 7 0 1g

g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}

rcp 1 3 1g

c1 2 3 {ccg}

c2 1 2 {cgp}

c3 1 3 {ccp}

r1 2 5 {rgi}

d3 5 3 dx

.model dx d(is=1n rs=1 cjo=10pf tt=1n)

.ends

***********************

.subckt cv5112 1 3 4 ; TRIODO SEGNALE

g1 2 4 value = {(exp(1.5*(log((v(2,4)/30)+v(3,4)))))/32.51}

c1 3 4 11p

c2 3 1 4p

c3 1 4 2.46p

r1 3 5 20k

d1 1 2 dx

d2 4 2 dx2

d3 5 4 dx

.model dx d(is=1p rs=1)

.model dx2 d(is=1n rs=1)

.ends cv5112 ; eq. 3a/167m

***********************

.model l_var ind(L=1 dev=5%)

***********************

.subckt 5842 1 2 3 ; placca griglia catodo

+ params: mu=42.4 ex=2.21 kg1=393 kp=629 kvb=446 rgi=2000

+ ccg=9p cgp=1.8p ccp=.48p

e1 7 0 value=

+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}

re1 7 0 1g

g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}

rcp 1 3 1g

c1 2 3 {ccg}

c2 1 2 {cgp}

c3 1 3 {ccp}

r1 2 5 {rgi}

d3 5 3 dx

.model dx d(is=1n rs=1 cjo=10pf tt=1n)

.ends

********************

.subckt 437a 1 2 3 ; placca griglia catodo

+ params: a=-0.90242 b=520 c=-12.98 d=-36.421

+ ccg=9p cgp=1.8p ccp=.48p ex=2.2 rgi=2k

e1 7 0 value=

+{a*((v(1,3)+b)/(v(2,3)+c))+d}

re1 7 0 1

g1 1 3 value= {pwr(v(7),ex)+pwrs(v(7),ex)}

rcp 1 3 1g

c1 2 3 {ccg}

c2 1 2 {cgp}

c3 1 3 {ccp}

r1 2 5 {rgi}

d3 5 3 dx

.model dx d(is=1n rs=1 cjo=10pf tt=1n)

.ends

********************************************

Duncan's Models

************************************************************************

.SUBCKT TRIODENH A G K

+PARAMS: LIP=1 LIF=3.7E-3 RAF=18E-3 RAS=1 CDO=0 RAP=4E-3

+ ERP=1.5 ERI=0

+ MU0=17.3 MUR=19E-3 EMC=9.6E-6 GCO=0 GCF=213E-6

+ CGA=3.9p CGK=2.4p CAK=0.7p

************************************************************************

*

* Anode/grid model

*

* Models reduction in mu at large negative grid voltages

* Models change in Ra with negative grid voltages

* Models limit in Ia with high +Vg and low Va

*

* PARAMETERS

*

* LIP Conduction limit exponent

* LIF Conduction limit factor

* CDO Conduction offset

* RAF Anode resistance factor for neg grid voltages

* RAP Anode resistance factor for positive grid voltages

* ERP Emission power

* ERI Emission power increase

* MU0 Mu between grid and anode at Vg=0

* MUR Mu reduction factor for large negative grid voltages

* EMC Emission coefficient

* GCO Grid current offset in volts

* GCF Grid current scale factor

*

************************************************************************

Elim LI 0 VALUE {PWR(LIMIT{V(A,K),0,1E6},{LIP})*{LIF}}

Egg GG 0 VALUE {V(G,K)-{CDO}}

Erpf RP 0 VALUE {1-PWR(LIMIT{-V(GG)*{RAF},0,0.999},{RAS})+LIMIT{V(GG),0,1E6}*{RAP}}

Egr GR 0 VALUE {LIMIT{V(GG),0,1E6}+LIMIT{(V(GG))*(1+V(GG)*{MUR}),0,-1E6}}

Eem EM 0 VALUE {LIMIT{V(A,K)+V(GR)*{MU0},0,1E6}}

Eep EP 0 VALUE {PWR(V(EM),ERP-LIMIT{V(G,K),0,-1E6}*ERI)*{EMC}*V(RP)}

Eel EL 0 VALUE {LIMIT{V(EP),0,V(LI)}}

Eld LD 0 VALUE {LIMIT{V(EP)-V(LI),0,1E6}}

Ga A K VALUE {V(EL)}

************************************************************************

*

* Grid current model

*

* Models grid current, along with rise in grid current at low Va

*

************************************************************************

Egf GF 0 VALUE {PWR(LIMIT{V(GG),0,1E6},1.5)*{GCF}}

Gg G K VALUE {(V(GF)+V(LD))}

*

* Capacitances and anti-float resistors

*

CM1 G K {CGK}

CM2 A G {CGA}

CM3 A K {CAK}

RF1 A 0 1000MEG

RF2 G 0 1000MEG

RF3 K 0 1000MEG

.ENDS

**********************************************************************

* GENERIC: 2A3

* MODEL: NH2A3

* NOTES: No heater model (virtual cathode)

**********************************************************************

.SUBCKT NH2A3 A G K

XV1 A G K TRIODENH

+PARAMS: LIP= 1.5 LIF= 0.003 RAF= 0.0045 RAS= 1 CDO= 0

+ RAP= 0.005 ERP= 1.6247 ERI=-0.000019

+ MU0= 3.7731 MUR= 0.004685 EMC= 0.0000615

+ GCO= 0 GCF= 0.0001

+ CGA=1.65E-11 CGK=7.50E-12 CAK=5.50E-12

.ENDS

**********************************************************************

* GENERIC: 3CX300

* MODEL: NH3CX300

* NOTES: No heater model

**********************************************************************

.SUBCKT NH3CX300 A G K

XV1 A G K TRIODENH

+PARAMS: LIP= 1.5 LIF= 10 RAF= 0.00473 RAS= 1 CDO= 0

+ RAP= 0.005 ERP= 1.25 ERI=-0.00053

+ MU0= 8.321 MUR= 0.0012 EMC= 0.000533

+ GCO= 0 GCF= 0.0001

+ CGA=1.00E-11 CGK=2.50E-11 CAK=1.00E-12

.ENDS

**********************************************************************

* GENERIC: SV6AS7

* MODEL: NHSV6AS7

* NOTES: No heater model

**********************************************************************

.SUBCKT NHSV6AS7 A G K

XV1 A G K TRIODENH

+PARAMS: LIP= 1 LIF= 0.01 RAF= 0.0058 RAS= 0.7 CDO= 0

+ RAP= 0.035 ERP= 1.5 ERI= 0

+ MU0= 2.05 MUR= 0.0017 EMC= 0.0005

+ GCO= 0 GCF= 0

+ CGA=1.10E-11 CGK=8.00E-12 CAK=3.00E-12

.ENDS

**********************************************************************

* GENERIC: 6SN7GTB

* MODEL: NH6SN7GTB

* NOTES: No heater model

**********************************************************************

.SUBCKT NH6SN7GTB A G K

XV1 A G K TRIODENH

+PARAMS: LIP= 1 LIF= 0.0037 RAF= 0.03 RAS= 2 CDO= 0

+ RAP= 0.002 ERP= 1.4 ERI= 0.007

+ MU0= 19.2642 MUR= 0.007677 EMC= 0.0000189

+ GCO= 0 GCF= 0.000213

+ CGA=3.90E-12 CGK=2.40E-12 CAK=7.00E-13

.ENDS

**********************************************************************

Maillet's Models



************ p g c **********(copyright vivaAnalog)******

.subckt RCA12ax7 1 2 3

*************************

eGIogVpc 20 0 value={log(v(1,3))}

rGlogVpc 20 0 1

eG0 10 0 poly(1) <2,3> -3.7694e+00 1.9947e+00 5.9432e-02

eG1 11 0 poly(1) <2,3> -3.2024e-02 -4.1443e-02 -4.8236e-03

eG2 12 0 poly(1) <2,3> 1.9127e-02 -1.2189e-02 -1.5526e-03

eG3 13 0 poly(1) <2,3> -1.1354e-02 4.9339e-03 6.1016e-04

rG0 10 0 1

rG1 11 0 1

rG2 12 0 1

rG3 13 0 1

gG 2 3 value={(exp(v(10)+v(20)*(v(11)+v(20)*(v(12)+v(20)*v(13)))))/170}

*

eP0 110 0 poly(1) <2,3> -9.9158e+0 1.9145e+0 -2.8135e+0 1.8661e+0

+ 1.5643e+0 4.7240e-1 6.4276e-2 3.3101e-3

eP1 111 0 poly(1) <2,3> 9.5428e-1 3.2558e-2 -8.3349e-1 -4.8578e-2

+ 2.6213e-1 1.0492e-1 1.8921e-2 1.3632e-3

eP2 112 0 poly(1) <2,3> 9.5766e-2 2.5192e-2 2.2391e-1 -1.7040e-1

+ -2.4952e-1 -1.0960e-1 -2.0981e-2 -1.4882e-3

eP3 113 0 poly(1) <2,3> -6.6107e-2 -3.9657e-2 7.5560e-2 3.1025e-2

+ 2.4265e-2 1.7002e-2 4.2512e-3 3.4761e-4

eP4 114 0 poly(1) <2,3> 8.4148e-3 4.7989e-3 -1.3258e-2 -1.9288e-3

+ 5.2888e-4 -5.6853e-4 -2.4727e-4 -2.4359e-5

rP0 110 0 1

rP1 111 0 1

rP2 112 0 1

rP3 113 0 1

rP4 114 0 1

gP 1 3 value={(exp(v(110)+v(20)*(v(111)+v(20)*(v(112)+v(20)*(v(113)+v(20)*v(114))))))}

Cgc 2 3 1.8p

Cgp 2 1 1.7p

Cpc 1 3 1.9p

.ends

************************* p g c

.subckt triode_GE12at7wc 1 2 3

**************************

ePIog1 20 0 value={log(v(1,3))}

rPlog1 20 0 1

eGp0 10 0 poly(1) <2,3> -2.7764e+00 2.2296e+00 7.5589e-02

eGp1 11 0 poly(1) <2,3> -4.1300e-02 -1.1676e-02 -1.4968e-03

eGp2 12 0 poly(1) <2,3> -2.3014e-02 -1.2650e-02 -2.1541e-03

eGp3 13 0 poly(1) <2,3> 1.0328e-03 1.9344e-03 3.6700e-04

rGp0 10 0 1

rGp1 11 0 1

rGp2 12 0 1

rGp3 13 0 1

gG 3 2 value={(exp(v(10)+v(20)*(v(11)+v(20)*(v(12)+v(20)*v(13)))))/3581}

ePp0 110 0 poly(1) <2,3> -3.6500e+00 7.6923e+00 -3.7894e+00 -7.2613e-01

+ -3.4056e-02

ePp1 111 0 poly(1) <2,3> 1.1200e+00 -1.6148e+00 8.2466e-01 1.7359e-01

+ 8.4978e-03

ePp2 112 0 poly(1) <2,3> 3.7117e-03 -5.1629e-02 3.1072e-02 6.1221e-03

+ 2.6104e-04

ePp3 113 0 poly(1) <2,3> 5.5502e-03 1.8236e-02 -1.0661e-02 -2.4714e-03

+ -1.2170e-04

rPp0 110 0 1

rPp1 111 0 1

rPp2 112 0 1

rPp3 113 0 1

gP 1 3 value={(exp(v(110)+v(20)*(v(111)+v(20)*(v(112)+v(20)*v(113)))))/1000}

.ends



************************* p g c

.subckt triode_GE12ax7wa1 1 2 3

**************************

eGIog1 20 0 value={log(v(1,3))}

rGlog1 20 0 1

eG0 10 0 poly(1) <2,3> -3.7694e+00 1.9947e+00 5.9432e-02

eG1 11 0 poly(1) <2,3> -3.2024e-02 -4.1443e-02 -4.8236e-03

eG2 12 0 poly(1) <2,3> 1.9127e-02 -1.2189e-02 -1.5526e-03

eG3 13 0 poly(1) <2,3> -1.1354e-02 4.9339e-03 6.1016e-04

rG0 10 0 1

rG1 11 0 1

rG2 12 0 1

rG3 13 0 1

gG 3 2 value={(exp(v(10)+v(20)*(v(11)+v(20)*(v(12)+v(20)*v(13)))))/170}

eP0 110 0 poly(1) <2,3> -1.6702e+00 3.9084e+00 -1.5799e+00 -1.3727e-01

+ -1.0348e-03

eP1 111 0 poly(1) <2,3> 1.1947e-01 -3.2355e-01 2.4620e-01 6.2866e-02

+ 3.9416e-03

eP2 112 0 poly(1) <2,3> 6.9903e-02 -7.3976e-02 -4.3982e-02 -6.3812e-03

+ -2.9682e-04

eP3 113 0 poly(1) <2,3> 4.2712e-03 3.4864e-03 8.3734e-03 4.4558e-04

+ -8.4579e-06

rP0 110 0 1

rP1 111 0 1

rP2 112 0 1

rP3 113 0 1

gP 1 3 value={(exp(v(110)+v(20)*(v(111)+v(20)*(v(112)+v(20)*v(113)))))/1000}

.ends

***************************************************

.subckt triode_GE12ax7wa1b 1 2 3

***************************

eGIoga 20 0 value={log(v(1,3))}

rGloga 20 0 1

eGIogb 21 0 value={log(v(2,3)+7)}

rGlogb 21 0 1

eG0 10 0

value={(exp(-1524.2+v(21)*(2083.2+v(21)*(-951.29+v(21)*(145.16)))))/0.049}

rG0 10 0 1

gG 2 3 value={bnd(v(10)*(exp(-1.2838+v(20)*(-9.2220e-2+v(20)*(-9.4734e-4+

+ v(20)*(-5.0132e-3)))))/1085)}

eP0 110 0 poly(1) <2,3> -1.6702e+00 3.9084e+00 -1.5799e+00 -1.3727e-01

+ -1.0348e-03

eP1 111 0 poly(1) <2,3> 1.1947e-01 -3.2355e-01 2.4620e-01 6.2866e-02

+ 3.9416e-03

eP2 112 0 poly(1) <2,3> 6.9903e-02 -7.3976e-02 -4.3982e-02 -6.3812e-03

+ -2.9682e-04

eP3 113 0 poly(1) <2,3> 4.2712e-03 3.4864e-03 8.3734e-03 4.4558e-04

+ -8.4579e-06

rP0 110 0 1

rP1 111 0 1

rP2 112 0 1

rP3 113 0 1

gP 1 3 value={(exp(v(110)+v(20)*(v(111)+v(20)*(v(112)+v(20)*v(113))))/1000)}

Cgc 2 3 1.8p

Cgp 2 1 1.7p

Cpc 1 3 1.9p

.ends

************************* p g c

.subckt triode_GE12ax7wa2 1 2 3

**************************

eGIog1 20 0 value={log(v(1,3))}

rGlog1 20 0 1

eG0 10 0 poly(1) <2,3> -3.7694e+00 1.9947e+00 5.9432e-02

eG1 11 0 poly(1) <2,3> -3.2024e-02 -4.1443e-02 -4.8236e-03

eG2 12 0 poly(1) <2,3> 1.9127e-02 -1.2189e-02 -1.5526e-03

eG3 13 0 poly(1) <2,3> -1.1354e-02 4.9339e-03 6.1016e-04

rG0 10 0 1

rG1 11 0 1

rG2 12 0 1

rG3 13 0 1

gG 3 2 value={(exp(v(10)+v(20)*(v(11)+v(20)*(v(12)+v(20)*v(13)))))/170}

eP0 110 0 poly(1) <2,3> -2.2416e+00 3.8456e+00 -1.0299e+00

+ 2.3909e-02 1.0561e-02

eP1 111 0 poly(1) <2,3> 2.9920e-01 -3.7081e-01 1.3630e-01

+ 3.5417e-02 2.0746e-03

eP2 112 0 poly(1) <2,3> 6.7037e-02 -8.1618e-02 -5.2735e-02

+ -8.6960e-03 -4.7085e-04

eP3 113 0 poly(1) <2,3> 2.2006e-03 6.6606e-03 1.0641e-02

+ 9.4134e-04 2.7545e-05

rP0 110 0 1

rP1 111 0 1

rP2 112 0 1

rP3 113 0 1

gP 1 3 value={(exp(v(110)+v(20)*(v(111)+v(20)*(v(112)+v(20)*v(113)))))/1000}

.ends

************************* p g c

.subckt triode_GE5751 1 2 3

**************************

eGIog1 20 0 value={log(v(1,3))}

rGlog1 20 0 1

eG0 10 0 poly(1) <2,3> -3.2813e+00 1.7569e+00 2.9338e-02

eG1 11 0 poly(1) <2,3> -9.0720e-02 -2.7519e-02 -3.0229e-03

eG2 12 0 poly(1) <2,3> -1.8084e-02 4.2859e-03 1.7988e-04

eG3 13 0 poly(1) <2,3> 1.1015e-03 4.2800e-04 1.0427e-04

rG0 10 0 1

rG1 11 0 1

rG2 12 0 1

rG3 13 0 1

gG 3 2 value={(exp(v(10)+v(20)*(v(11)+v(20)*(v(12)+v(20)*v(13)))))/189}

eP0 110 0 poly(1) <2,3>

+ -4.9584e-1 4.2097e+0 -2.7252e+0 -2.0530e-1 1.3162e-2 1.3347e-3

eP1 111 0 poly(1) <2,3>

+ 2.6000e-2 -3.4437e-1 1.3060e-1 -8.7594e-2 -1.5166e-2 -6.5829e-4

eP2 112 0 poly(1) <2,3>

+ -3.5787e-2 -2.2883e-1 2.4121e-1 1.0443e-1 1.4721e-2 6.5731e-4

eP3 113 0 poly(1) <2,3>

+ 2.0259e-2 2.8834e-2 -3.1118e-2 -1.3945e-2 -2.0977e-3 -9.8313e-5

rP0 110 0 1

rP1 111 0 1

rP2 112 0 1

rP3 113 0 1

gP 1 3 value={(exp(v(110)+v(20)*(v(111)+v(20)*(v(112)+v(20)*v(113)))))/1000}

.ends



**************************** p g c

.subckt triode_PHLPS12at7wc 1 2 3

****************************

ePIog1 20 0 value={log(v(1,3))}

rPlog1 20 0 1

eGp0 10 0 poly(1) <2,3> -3.4856e+00 1.9216e+00 6.7355e-02

eGp1 11 0 poly(1) <2,3> -2.7396e-02 -4.0726e-02 -5.5367e-03

eGp2 12 0 poly(1) <2,3> -2.5889e-02 -1.0947e-03 -1.2516e-04

eGp3 13 0 poly(1) <2,3> -5.3691e-04 1.5773e-03 2.5402e-04

rGp0 10 0 1

rGp1 11 0 1

rGp2 12 0 1

rGp3 13 0 1

gG 3 2 value={(exp(v(10)+v(20)*(v(11)+v(20)*(v(12)+v(20)*v(13)))))/3581}

ePp0 110 0 poly(1) <2,3> -2.7098e+00 7.6798e+00 -3.8264e+00 -7.3346e-01

+ -3.4417e-02

ePp1 111 0 poly(1) <2,3> 9.6711e-01 -1.6271e+00 8.1943e-01 1.7330e-01

+ 8.4990e-03

ePp2 112 0 poly(1) <2,3> 1.2914e-02 -5.2319e-02 3.8963e-02 7.9005e-03

+ 3.5277e-04

ePp3 113 0 poly(1) <2,3> 1.8966e-03 1.8966e-02 -1.1283e-02 -2.6729e-03

+ -1.3326e-04

rPp0 110 0 1

rPp1 111 0 1

rPp2 112 0 1

rPp3 113 0 1

gP 1 3 value={(exp(v(110)+v(20)*(v(111)+v(20)*(v(112)+v(20)*v(113)))))/1000}

.ends



Marshall's and Reynold's Models + Variations

***********************

.subckt 12ax7 1 3 4 ; TRIODO SEGNALE

g1 2 4 value = {(exp(1.5*(log((v(2,4)/85)+v(3,4)))))/580}

c1 3 4 1.6p

c2 3 1 1.7p

c3 1 4 .46p

r1 3 5 50k

d1 1 2 dx

d2 4 2 dx2

d3 5 4 dx

.model dx d(is=1p rs=1)

.model dx2 d(is=1n rs=1)

.ends 12ax7 ; eq. ecc83

************************

.subckt 6sn7 1 3 4 ; TRIODO SEGNALE

g1 2 4 value = {(exp(1.5*(log((v(2,4)/22)+v(3,4)))))/1086}

*+ (0, 0) (20u, 20u)

*+ (30u, 30u) (.35m, .806m)

*+ (1m, 1.77m) (1.5m, 2.322m)

*+ (2m, 2.85m) (3m, 4.015m)

*+ (4m, 4.87m) (5m, 5.8m)

*+ (8m, 8.77m) (10m, 10.33m)

*+ (15m, 14.65m) (20m, 19.405m)

c1 3 4 2.6p

c2 3 1 4p

c3 1 4 .7p

r1 3 5 10k

d1 1 2 dx

d2 4 2 dx2

d3 5 4 dx

.model dx d(is=1p rs=1)

.model dx2 d(is=1n rs=1)

.ends 6sn7

************************

.subckt 12au7 1 3 4 ; TRIODO SEGNALE

g1 2 4 value = {(exp(1.5*(log((v(2,4)/18)+v(3,4)))))/1151}

c1 3 4 1.6p

c2 3 1 1.5p

c3 1 4 .5p

r1 3 5 10k

d1 1 2 dx

d2 4 2 dx2

d3 5 4 dx

.model dx d(is=1p rs=1)

.model dx2 d(is=1n rs=1)

.ends 12au7 ; eq. ecc82

***********************



*************************

.subckt VT4C 1 3 4 ; TRIODO DI POTENZA D.H.T. ( G.E.)

g1 2 4 value = {(exp(1.5*(log((v(2,4)/12)+v(3,4)))))/3010}

c1 3 4 6p

c2 3 1 14.5p

c3 1 4 5.5p

r1 3 5 10k

d1 1 2 dx

d2 4 2 dx2

d3 5 4 dx

.model dx d(is=1p rs=1)

.model dx2 d(is=1n rs=1)

.ends VT4C ; eq. 211A

***********************

.subckt 2A3 1 3 4 ; TRIODO DI POTENZA D.H.T. ( F.I.V.R.E.)

g1 2 4 value = {(exp(1.5*(log((v(2,4)/4.2)+v(3,4)))))/970}

c1 3 4 7.5p

c2 3 1 16.5p

c3 1 4 5.5p

r1 3 5 10k

d1 1 2 dx

d2 4 2 dx2

d3 5 4 dx

.model dx d(is=1p rs=1)

.model dx2 d(is=1n rs=1)

.ends 2A3

***********************

.subckt ECC88 1 3 4 ; TRIODO DI SEGNALE ( F.I.V.R.E.)

g1 2 4 value = {(exp(1.5*(log((v(2,4)/33)+v(3,4)))))/104}

c1 3 4 3.3p

c2 3 1 1.4p

c3 1 4 2.8p

r1 3 5 10k

d1 1 2 dx

d2 4 2 dx2

d3 5 4 dx

.model dx d(is=1p rs=1)

.model dx2 d(is=1n rs=1)

.ends ECC88 ; eq. 6dj8, 7dj8, e88cc, 6922

***********************

.subckt 300B 1 3 4 ; TRIODO DI POTENZA D.H.T. (WESTERN ELECTRIC)

g1 2 4 value = {(exp(1.46*(log((v(2,4)/3.5)+v(3,4)))))/2000}

c1 3 4 9p

c2 3 1 15p

c3 1 4 4.3p

r1 3 5 10k

d1 1 2 dx

d2 4 2 dx2

d3 5 4 dx

.model dx d(is=1p rs=1)

.model dx2 d(is=1n rs=1)

.ends 300B ;

***********************



.subckt 6FQ7 1 3 4 ; TRIODO DI SEGNALE ALTA CORRENTE

g1 2 4 value = {(exp(1.5*(log((v(2,4)/20)+v(3,4)))))/1049}

c1 3 4 2.4p

c2 3 1 3.6p

c3 1 4 .34p

r1 3 5 10k

d1 1 2 dx

d2 4 2 dx2

d3 5 4 dx

.model dx d(is=1p rs=1)

.model dx2 d(is=1n rs=1)

.ends 6FQ7 ;

***********************

.subckt 6CG7 1 3 4 ; TRIODO DI SEGNALE ALTA CORRENTE

g1 2 4 value = {(exp(1.5*(log((v(2,4)/20)+v(3,4)))))/990}

c1 3 4 2.3p

c2 3 1 4p

c3 1 4 2.2p

r1 3 5 10k

d1 1 2 dx

d2 4 2 dx2

d3 5 4 dx

.model dx d(is=1p rs=1)

.model dx2 d(is=1n rs=1)

.ends 6CG7 ;

***********************



.subckt E88CC 1 3 4 ; TRIODO DI SEGNALE (SQ PHILIPS) *modello sperimentale*

g1 2 4 value = {(exp(1.5*(log((v(2,4)/(-0.1369*v(3,4)*v(3,4)-1.0232*v(3,4)+31.5035))+v(3,4)))))/120}

c1 3 4 3.3p

c2 3 1 1.4p

c3 1 4 2.8p

r1 3 5 10k

d1 1 2 dx

d2 4 2 dx2

d3 5 4 dx

.model dx d(is=1p rs=1)

.model dx2 d(is=1n rs=1)

.ends E88CC ; eq. 6dj8, 7dj8, 6922

***********************

.subckt 6C33C-B 1 3 4 ; POWER TRIODE (SOVTEK) *modello sperimentale*

g1 2 4 value = {(exp(1.5*(log((v(2,4)/(-0.0002*v(3,4)*v(3,4)-0.0231*v(3,4)+1.6840))+v(3,4)))))/517}

c1 3 4 26p

c2 3 1 30p

c3 1 4 10p

r1 3 5 10k

d1 1 2 dx

d2 4 2 dx2

d3 5 4 dx

.model dx d(is=1p rs=1)

.model dx2 d(is=1n rs=1)

.ends 6C33C-B

************************

.subckt 12AT7 1 3 4 ; TRIODO DI SEGNALE *modello sperimentale*

g1 2 4 value = {(exp(1.5*(log((v(2,4)/(-.3512*v(3,4)*v(3,4)-2.6040*v(3,4)+62.7825))+v(3,4)))))/147}

c1 3 4 2.2p

c2 3 1 1.5p

c3 1 4 .5p

r1 3 5 10k

d1 1 2 dx

d2 4 2 dx2

d3 5 4 dx

.model dx d(is=1p rs=1)

.model dx2 d(is=1n rs=1)

.ends 12AT7 ;eq. ECC81

***********************

.subckt 5842 1 3 4 ; TRIODO DI SEGNALE ( General Electric)

g1 2 4 value = {(exp(1.5*(log((v(2,4)/43)+v(3,4)))))/98.54}

c1 3 4 3.3p

c2 3 1 1.4p

c3 1 4 2.8p

r1 3 5 10k

d1 1 2 dx

d2 4 2 dx2

d3 5 4 dx

.model dx d(is=1p rs=1)

.model dx2 d(is=1n rs=1)

.ends 5842 ; 417A

***********************

.subckt SV811-10 1 3 4 ; Power Triode ( Svetlana )

g1 2 4 value = {(exp(1.5*(log((v(2,4)/11)+v(3,4)))))/1668}

c1 3 4 7p

c2 3 1 8p

c3 1 4 8p

r1 3 5 10k

d1 1 2 dx

d2 4 2 dx2

d3 5 4 dx

.model dx d(is=1p rs=1)

.model dx2 d(is=1n rs=1)

.ends SV811-10,

***********************

.subckt cv5112 1 3 4 ; TRIODO SEGNALE

g1 2 4 value = {(exp(1.5*(log((v(2,4)/47)+v(3,4)))))/32.51}

c1 3 4 11p

c2 3 1 4p

c3 1 4 2.46p

r1 3 5 20k

d1 1 2 dx

d2 4 2 dx2

d3 5 4 dx

.model dx d(is=1p rs=1)

.model dx2 d(is=1n rs=1)

.ends cv5112 ; eq. 3a/167m

***********************

.subckt 6080 1 3 4 ; TRIODO SEGNALE

g1 2 4 value = {(exp(1.5*(log((v(2,4)/2)+v(3,4)))))/732}

c1 3 4 1.6p

c2 3 1 1.7p

c3 1 4 .46p

r1 3 5 50k

d1 1 2 dx

d2 4 2 dx2

d3 5 4 dx

.model dx d(is=1p rs=1)

.model dx2 d(is=1n rs=1)

.ends 6080 ;

************************

.subckt 12ax7i p g k

e1 2 0 value = {v(p,k) + 83.5*v(g,k)}

r1 2 0 1k

gp p k value = {1.73e-6*(pwr(v(2),1.5)+pwrs(v(2),1.5))/2}

rgk g 1 100k

d1 1 k dm

cgp g p 1.6p

cgk g k 1.7p

cpk p k .4p

.model dm d

.ends ;modello "Marshall"

*************************

.subckt 811a p g k

e1 2 0 value = {v(p,k) + 140*v(g,k)}

r1 2 0 1k

gp p k value = {3.73e-7*(pwr(v(2),1.5)+pwrs(v(2),1.5))/2}

rgk g 1 2k

d1 1 k dm

cgp g p 1.6p

cgk g k 1.7p

cpk p k .4p

.model dm d

.ends ;modello "Marshall"

*************************

.subckt 845 p g k

e1 2 0 value = {v(p,k) +5.27*v(g,k)}

r1 2 0 1k

e2 3 0 table {v(p,k)} =

+ (20, 0) (100, 1)

r2 3 0 1k

gp p k value = {(2.484e-5*(pwr(v(2),1.5)+pwrs(v(2),1.5))/2)*v(3)}

rgk g 1 8k

d1 1 k dm

cgp g p 13.5p

cgk g k 6p

cpk p k 6.5p

.model dm d

.ends 845 ; modello "Marshall"

************************

.subckt 6sn7-gt p g k

e1 2 0 value = {v(p,k) +20*v(g,k)}

*e2 3 0 table {v(p,k)} =

*+ (175, 0) ;(175, 2.857)

*+ (200, 0.997) (225, 1)

*+ (250, 1) (275, .978)

*+ (300, .945) (325, .917)

*+ (350, .906)

r1 2 0 1k

*r2 3 0 1k

gp p k value ={1.054e-5*(pwr(v(2),1.5)+pwrs(v(2),1.5))/2}

rgk g 1 10k

d1 1 k dm

cgp g p 3.8p

cgk g k 2.6p

cpk p k .7p

.model dm d

.ends 6sn7-gt ; Modello "Marshall"

************************

Rydel's Models

*******************************

.subckt e182cc p g k ;Rydel's Models Triode Mode

+params: gp=0.00035349 b=36443491.15

+ c=8.843336963 d=81.53628791

+ cgk=11p cgp=5p

+ cpk=1.8p mu=24

e1 1 0 value= {1+(v(g,k)/b)}

re1 1 0 100meg

e2 2 0 value= {v(p,k)/(v(p,k)+c)}

re2 2 0 100meg

e3 3 0 value= {v(g,k)+((v(p,k)+d)/mu)}

re3 3 0 100meg

g1 p k value= {gp*v(1)*v(2)*((1/2)*(pwr(v(3),1.5)+pwrs(v(3),1.5)))}

rpk p k 100meg

c1 g k {cgk}

c2 g p {cgp}

c3 p k {cpk}

.ends

********************************

.subckt e55l p g k ;Rydel's Models Triode Mode

+params: gp=0.004735979219 b=3734.604234

+ c=0.3266713215 d=79.54627249

+ cgk=11p cgp=5p

+ cpk=1.8p mu=30

e1 1 0 value= {1+(v(g,k)/b)}

re1 1 0 100meg

e2 2 0 value= {v(p,k)/(v(p,k)+c)}

re2 2 0 100meg

e3 3 0 value= {v(g,k)+((v(p,k)+d)/mu)}

re3 3 0 100meg

g1 p k value= {gp*v(1)*v(2)*(pwr(v(3),1.5)+pwrs(v(3),1.5))}

rpk p k 100meg

c1 g k {cgk}

c2 g p {cgp}

c3 p k {cpk}

.ends

********************************

.subckt 6c33c p g k ;Rydel's Models

+params: g=2.957e-3 B=16.976 mu=1.984

+ k=0.941 Vc=-0.578

+ cgk=11p cgp=5p

+ cpk=1.8p

e1 1 0 value= {1+(v(g,k)/(B-(V(g,k)/k)))}

re1 1 0 100meg

e2 2 0 value= {v(g,k)+((v(p,k)+Vc)/mu)}

re2 2 0 100meg

g1 p k value= {g*v(1)*(pwr(v(2),1.5)+pwrs(v(2),1.5))}

rpk p k 100meg

c1 g k {cgk}

c2 g p {cgp}

c3 p k {cpk}

.ends





*************************

.subckt 6c33c_m p g k ;Rydel's Models

+params: g=2.957e-3 B=16.976 mu=2.2

+ k=0.941 Vc=-0.578

+ cgk=11p cgp=5p

+ cpk=1.8p

v_eddy 10 0 2.984

R_eddy1 10 11 0.504k

R-break 11 0 {m}

e1 1 0 value= {1+(v(g,k)/(B-(V(g,k)/k)))}

re1 1 0 100meg

e2 2 0 value= {v(g,k)+((v(p,k)+Vc)/v(11))}

re2 2 0 100meg

g1 p k value= {g*v(1)*(pwr(v(2),1.5)+pwrs(v(2),1.5))}

rpk p k 100meg

c1 g k {cgk}

c2 g p {cgp}

c3 p k {cpk}

.ends 6c33c_m
********************************

No comments:

Post a Comment

Improved vacuum tube models for SPICE simulations

  Improved vacuum tube models for SPICE simulations from: https://www.i-t.com/blog/updating-norman-korens-tube-amplifier-design/improved-vac...